los 100ºs numeros del nº Pi

El numero     
El número se define como la razon entre la longitud de una circunferencia y su diámetro. Se puede calcular una aproximación de forma experimental. Puedes coger un recipiente redondo (por ejemplo, un bote de conservas) y medirlo. Yo he obtenido para la longitud de la circunferencia 26'7 cm, y para el diámetro 8'5 cm. He realizado la división y el cociente es 3'141176... (téngase en cuenta el error experimental). Los objetos redondos (ruedas, recipientes,...) han sido utilizados por el hombre desde hace miles de años. En algún momento debieron darse cuenta de que ese 3'14... que aparece siempre que manejamos circunferencias, círculos y esferas es un número que podemos utilizar para calcular longitudes, áreas y volúmenes. 
       
Los geómetras de la Grecia clásica conocían que la razón entre la longitud de una circunferencia cualquiera y su diámetro es siempre constante (el número al que ahora llamamos pi). También conocían y habían conseguido demostrar que tanto la razón entre el área de un círculo y su diámetro al cuadrado, como la del volumen de una esfera al cubo de su diámetro eran constantes (desconocidas en aquel momento, libro XII de "Los Elementos"). Fue Arquímedes (siglo III a. de C.) quien determinó que estas constantes estaban estrechamente relacionadas con . Además, utilizó el método de exhaución, inscribiendo y circunscribiendo polígonos de hasta 96 lados y consiguiendo una magnífica aproximación (si tenemos en cuenta los medios con los que contaba), 3+10/71 < < 3+1/7; es decir, el número buscado está entre 3'1407 y 3'1428 (se puede ver en su obra "Sobre la medida del circulo").
       
En China también se hicieron esfuerzos para calcular su valor. Liu Hui en el siglo III, utiliza polígonos de hasta 3072 lados para conseguir el valor de 3'14159, y Tsu Ch'ung Chi en el siglo V da como valor aproximado 355/113 = 3'1415929...
       
De la India nos han llegado unos documentos llamados Siddhantas, que datan del 380 d. de C. Son unos sistemas astronómicos en los que se da a el valor 3 + 177/1250, que es exactamente 3'1416. A caballo entre los siglos V y VI vive un importante matemático, Aryabhata, que en su libro Aryabhatiya da una regla de la que obtenemos ese mismo valor: "Suma 4 a 100, multiplica por 8 y súmale 62.000. El resultado te da aproximadamente la circunferencia de un círculo cuyo diámetro es 20.000". Muchos años después, hacia el 1400, otro matemático hindú, Madhava descubre los desarrollos en serie de seno, coseno y arco tangente, y consigue calcular 11 cifras decimales sumando 21 términos de la serie que, más de doscientos años después, redescubriría Gregory.
      
En 1429, Al-Khasi sigue utilizando el método de Arquímedes y trabaja con polígonos de hasta ¿50.331.648? ¿805.306.368? lados para obtener el valor 3'14159265358979 (14 decimales). En el siglo XVI, el matemático francés Vieta usó polígonos de hasta 393.216 lados para aproximarse hasta 3'141592653 (9).
       
El siguiente avance teórico se debe a dos holandeses. Willebrod Snell (1580-1626) consigue demostrar  que el arco x está comprendido entre 3*sen(x)/(2+cos(x))  y  1/3*(2*sen(x)+tan(x)). Christian Huyghens1/3 . Con su método, Snell obtuvo 34 decimales exactos, partiendo del cuadrado y doblando 28 veces el número de lados. Como ejemplo tomemos x = pi/16, y las fórmulas de Snell multiplicadas por 16 nos dan unos valores de 3.141566592 y 3.141697707 respectivamente, lo que da una idea de lo próximos que están a . (1629-1695), cuya obra ha sido calificada como modelo de razonamiento geométrico, propone que el arco x puede aproximarse por la expresión (sen²(x)*tan x)

Los 100ºs numeros de3.14159263589793238462643383279502884197169399375105820974944592307816406208998628034825342117067982

P&J cºLtd Graffics Editions
Copyright (c) 2010
All rights reserved

Todos los derechos reservados
(Informacion obtenida de http://centros5.pntic.mec.es/ies.de.bullas/dp/matema/conocer/numpi.htm)

2 comentarios: